

Guía de aprendizaje de Ingeniería de Procesos

1. Datos Descriptivos

Titulación	Graduado en Tecnología de las Industrias Agrarias y Alimentarias						
Módulo	Tecnología de /	Tecnología de Alimentos					
Materia	Ingeniería de p	Ingeniería de procesos					
Asignatura	Ingeniería de procesos						
Nombre en Inglés	Food Process Engineering						
Departamento	Matemática Aplicada a la Ingeniería Agronómica						
Carácter	Obligatoria Curso 3º Semestre 2º						
Código UPM	525002318	ECTS	4	Idioma	Español		

Curso académico	2013-2014		
Semestre/s y turno/s de impartición	2º		
Semestre/s y turno/s de impartición	Mañana		

2. Profesorado

Profesorado		
Nombre y apellidos (C = Coordinador)	Despacho ¹	Correo electrónico
Ana María Tarquis Alfonso (C)	1A3	anamaria.tarquis@upm.es
Guillermo Rodríguez Badiola		guillermo.rodriguez@upm.es
José María Durán Altisent		josemaria.duran@upm.es

¹ Código conforme al indicado en el epígrafe Directorio/Localizador de la página Web

Tribunal de la asignatura		
Nombre y apellidos	Cargo	Correo electrónico
Guillermo Rodriguez Badiola	Presidente	guillermo.rodriguez@upm.es
Jorge López Dominguez	Vocal	jorge.lopez.dominguez@upm.es
Ana María Tarquis Alfonso	Secretario	anamaria.tarquis@upm.es

3. Resultados de Aprendizaje

Resultad	Resultados de aprendizaje de la asignatura					
Código	Descripción de los resultados de aprendizaje					
RA01	Resolver los problemas de cálculo del número de Reynolds y determinación de régimen de circulación.					
RA02	Resolver problemas de balances de materia, energía y transmisión de calor.					
RA03	Aplicar los principios de diseño y control de procesos.					
RA04	Capacidad para la simulación y optimización del control de procesos.					
RA05	Comprender los principios del análisis de control de procesos en la industria alimentaria.					
RA06	Plantear supuestos prácticos relacionados con los contenidos impartidos durante las clases teóricas.					
RA07	Aplicar los conocimientos teóricos adquiridos para preparar un sistema donde se establezca un balance de materia en régimen no estacionario a nivel de planta piloto y un sistema donde se produzca transmisión de calor por conducción en régimen no estacionario.					
RA08	Resolver en hoja de cálculo los sistemas anteriores					

Interrelación Competencias (CG y CE) - Resultados de aprendizaje (RA)								
Código CG Código CE						E		
RA	CG1	CG4	CG14	CG16	CE1	CE1 CE5 CE9		
RA01	X	Χ			Χ			
RA02	X	Χ			X			
RA03		Χ	X			X		
RA04		X	X	X		X	X	
RA05	X	Χ	X	X		X	X	
RA06		Χ		X		Χ	X	
RA07	X	Χ	X	X	Χ	X	X	
RA08		X		X		X	X	

Relación de indicadores de logro (IL) asociados a los resultados de aprendizaje (RA)							
Código IL	Descripción del indicador de logro (IL)	Básico	RA asociados				
IL 01	Adquirir una primera aproximación de la forma en que actúan los sistemas de control, aprendiendo a identificar tipos de variables.		RA05				
IL 02	Aprender a usar la transformada de Laplace para la resolución de ecuaciones diferenciales.		RA03				
IL 03	Saber deducir las funciones de transferencia de los sistemas		RA03				
IL 04	Aprender la metodología para encontrar la respuestas temporales de los sistemas a partir de la función de transferencia		RA03				
IL 05	Conocer entradas típicas que desvían los sistemas de su estado estacionario.		RA05, RA06				
IL 06	Aprender a asociar la repuesta temporal con los polos de la función transformada.		RA03				
IL 07	Aprender a identificar los procesos a partir de sus respuestas temporales.		RA03, RA08				
IL 08	Aprender a usar las funciones simplificadas para la caracterización de problemas complejos.		RA05, RA06				
IL 09	Analizar las características del comportamiento transitorio de los sistemas de control.		RA04, RA08				
IL 10	Manejar el concepto de estabilidad aplicando el criterio de Routh.		RA03, RA08				

IL 11	Comprender las influencias de las acciones Proporcional, Integral y Derivativa en el comportamiento transitorio de los sistemas controlados.	RA03,RA04
IL 12	Aprender métodos de sintonización de controladores.	RA05, RA06
IL 13	Aplicar criterios de conducta para evaluar el comportamiento de los lazos de control.	RA03, RA04, RA08
IL 14	Aplicar el criterio de estabilidad de Bode en la sintonización de controladores y para evaluar el efecto de la incertidumbre.	RA03, RA04, RA08
IL 15	Aplicar el criterio de estabilidad de Bode para elegir la característica de Flujo de las válvulas.	RA05, RA06, RA08
IL 16	Saber explicar los fenómenos de transporte de materia, energía y cantidad de movimiento en base a las leyes físicas que los rigen.	RA01
IL 17	Comprender los fenómenos asociados al transporte de fluidos. Conocer los diferentes regímenes.	RA01
IL 18	Saber aplicar operaciones unitarias en un proceso en la IA de acuerdo al objetivo buscado.	RA02
IL 19	Saber plantear los balances de materia, energía y cantidad de movimiento en las operaciones de la IA, y resolverlos.	RA02

4. Unidades Temáticas y su distribución temporal a lo largo del periodo de docencia

Contenidos específicos (Temario)						
Unidad	Tema	Apartado	RA	IL		
		Concepto de Operación y Proceso	RA01	IL16		
	Introducción a la Ingeniería de los procesos alimentarios	Ingeniería de las Operaciones y Procesos en la IA		IL17		
Fundamentos de	aiimentarios	Evolución y Características de la IA				
la Ingeniería de Procesos	Procesos y	Diagramas de Flujo Régimen estacionario y no estacionario	RA02	IL18 IL19		
	Operaciones Unitarias. Diagramas de flujo	Operaciones Continuas, Discontinuas y Semicontinuas				
		Clasificación de las Operaciones Unitarias	5400			
	Balances de Materia y Energía	Leyes de Conservación de la Materia, Energía y Cantidad de Movimiento	RA02	IL18 IL19		
Balances de Materia y Energía		Balances de la Propiedad del Sistema. Aplicaciones a los Flujos de Materia, de Energía y de Cantidad de Movimiento				
		Tipos de Ecuaciones de Balances de una				
		Propiedad				
		Transporte de Cantidad de Movimiento. Ley	RA01	IL16 IL17		
		de Newton de la Viscosidad		IL1/		
Fenómenos de	Transferencias de Cantidad de	Transmisión de la Energía. Formas de				
transporte	Movimiento, Calor	Transmisión. Ley de Fourier de la Conducción Calorífica				
	y Materia	Transferencia de Materia. Ley de Fick de la				
		Difusión				
		Contexto de la disciplina y su relación con la industria alimentaria	RA05 RA06	IL01 IL05		
Control de Procesos	Introducción general	Ejemplo de proceso alimentario y sus sistemas de control				
	30	Conceptos generales	-			
		Instrumentación				

		Transformada de Laplace	RA03	IL02
	Dinámica de un	La función de transferencia. Álgebra de funciones de transferencia		IL03
sistema		Inversión de transformadas		
		Expansión en fracciones parciales		
		Definición de sistema lineal de primer orden	RA03	IL03 IL04
		Respuestas a distintas funciones		ILU4
Sistemas de 1er y 2		Definición de sistema de segundo orden		
		Respuesta a una entrada en escalón		
		Linealización y retrasos		
		Descripción de un bucle de control	RA03	IL07
Acciones	Acciones de control	Control proporcional (P)	RA04 RA08	IL11
		Control P + Integral (PI) y P + Derivativo (PD)		
		Control PID		
		Acción de control proporcional	RA03	IL06 IL08
		Acción de control integral	RA04	
Control p		Acción de control derivativa	RA05	IL09
retroalime	entación	Acciones de control combinadas	RA06 RA08	
		Influencia de los retrasos		
		Ecuación característica	RA03	IL11
		Método de Routh-Hurvitz	RA04 RA05	IL12 IL13
Análisis o		Método del lugar de las raíces	RA06	IL14
estabilida	dU	Criterio de estabilidad de Bode	RA08	IL15
		Criterio de estabilidad de Nyquist		
		Métodos empíricos y semiempíricos		

Descripción de las actividades de enseñanza, aprendizaje y evaluación

Actividades de ens	Actividades de enseñanza-aprendizaje y evaluación de la asignatura					
Actividad	Breve descripción con indicación del método docente utilizado					
Clases de teoría	LM (lección magistral); ABP (aprendizaje basado en problemas)					
Clases de problemas	ABP (aprendizaje basado en problemas)					
Prácticas de laboratorio y/o campo	MC (Método del caso); AC (aprendizaje cooperativo)					
Otras actividades presenciales (tutorías grupales, seminarios, conferencias, visitas)	Invitación de un profesional del área para dar un seminario sobre la instrumentación en los sistemas de control					
Trabajos autónomos (individual y/o en grupo)	AOP (aprendizaje orientado a proyectos)					
Otros (especificar)						

6. Calendario de actividades de trabajo para el estudiante (Cronograma de trabajo de la asignatura)

Breve descripción de los diferentes tipos de actividades que se van a desarrollar durante esa semana, indicando el tiempo previsto para cada una de ellas

Semana	Actividades en aula	Laboratorio	Otras actividades presenciales	Trabajo/estudio individual	Trabajo en Grupo	Actividades de evaluación	Otros
1	Explicación de elementos teóricos y resolución de ejercicios de los apartados 1.1 y 1.2 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)			
2	Explicación de elementos teóricos y resolución de ejercicios del apartado 1.2 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)			
3	Explicación de elementos teóricos y resolución de ejercicios de los apartados 1.2 y 2.1 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)			
4	Explicación de elementos teóricos y resolución de ejercicios de los apartados 2.1 y 3.1 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)			

5	Explicación de elementos teóricos y resolución de ejercicios de los apartados 3.1 (2h)			Estudio de teoría y resolución de ejercicios propuestos (3h)		Prueba escrita (1h)
6	Explicación de elementos teóricos y resolución de ejercicios del apartado 4.1 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)	Trabajo en grupo (2h)	
7	Explicación de elementos teóricos y resolución de ejercicios del apartado 4.2 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)	Trabajo en grupo (2h)	
8	Explicación de elementos teóricos y resolución de ejercicios del apartado 4.3 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)	Trabajo en grupo (2h)	
9	Explicación de elementos teóricos y resolución de ejercicios del apartado 4.4 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)		
10		Práctica sobre el apartado 4.4 (2h)	Visita instalaciones (1h)	Resolución de problemas propuestos (3h)	Trabajo en grupo (2h)	Corrección (1h)
11	Explicación de elementos teóricos y resolución de ejercicios del apartado 4.5 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)		

12		Práctica sobre el apartado 4.5 (2h)	Visita instalaciones (2h)	Resolución de problemas propuestos (3h)	Trabajo en grupo (2h)	Corrección (1h)
13	Explicación de elementos teóricos y resolución de ejercicios del apartado 4.6 (3h)			Estudio de teoría y resolución de ejercicios propuestos (3h)		
14		Práctica sobre el apartado 4.6 (2h)	Visita instalaciones (2h)	Resolución de problemas propuestos (3h)	Trabajo en grupo (2h)	Corrección (1h)
15			Seminario sobre un sistema de control industrial (1h)	Trabajo sobre el seminario (3h)		Prueba escrita (1h)
16						Examen final (2h) 6 de junio

Sistema de evaluación y calificación

Evaluación sumativa					
Breve descripción de las actividades evaluables (tipo de prueba, indicadores evaluados, duración)	Semana/s	Lugar	Peso en la nota final (%)		
Evaluación continua					
Una evaluación por UT1, UT2, UT3 (1 hora)	5	C6	40		
Una evaluación por UT4 (1 hora)	15	C6	30		
Prácticas de la UT4	10, 12, 14		20		
Asistencia actitud			10		
Evaluación sólo prueba final					
Examen final	18	Aula	100		

Criterios de calificación

Descripción de los criterios de evaluación de la asignatura (partes teórica y práctica), en su caso, normas específicas sobre calificaciones mínimas para incluir en la evaluación sumativa, normas durante la realización de las pruebas, fechas de publicación de calificaciones y procedimiento de revisión, posibilidades de recuperación, etc..

EC y EF.

Se establecen dos sistemas de evaluación: Evaluación Continua y Evaluación Final.

EC: el alumno deberá asistir regularmente a clase y realizar 3 pruebas que se llevarán a cabo en horario de clase que incluirán todos los contenidos de la asignatura (incluidas prácticas y seminarios) que serán liberatorias del final. Tendrá que asistir a todas las prácticas. Irá al final sólo con la parte suspendida.

EF: el alumno realizará un examen final que constará de una parte (30 % de la nota) que corresponderá a los contenidos de las clases de teoría y prácticas de laboratorio y una segunda parte de problemas (70 %).

El total de la nota del examen final será de 9 puntos. La asistencia a prácticas se puntuará en función del número de prácticas a realizar, con un máximo de 1 punto sobre el total de la nota.

El sistema de calificaciones se expresará mediante calificación numérica de acuerdo con lo establecido en el Art. 5 del Real Decreto 1125/2003, de 5 de septiembre, por el que se establece el sistema europeo de créditos y el sistema de calificaciones en las titulaciones universitarias de carácter oficial y validez en todo el territorio nacional.

8. Recursos de enseñanza-aprendizaje

Bibliografía y otros materiales y recursos didácticos de apoyo					
	Bibliografía	Bolton, W.; Instrumentación y Control Industrial, Ed. Paraninfo, 1.996			
		Kuo, B.C.; Sistemas de control automático, Ed. Prentice- Hall, 1.997.			
		Ogata, K.; Ingenieria de Control Moderna, Ed. Prentice-Hall, 1.998.			
		Dorf, R y Bishop,R. Sistemas de control moderno. Ed. Prentice Hall. 2005			
		Huang, Y. Whittaker, A., Lacey, R., Automation for Food Engineering: Food Quality Quantization and Process Control. Ed. CRC Series in Contemporary Food Science, 2001.			
		Luyben, E. Process Modelling. Mac Graw-Hill (1993)			
Material de estudio		Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis. Ed. MacGraw-Hill (1991)			
		Jacobs, O.L. Introduction to Control Theory. Ed. Oxford Science Publications (1993)			
		Hocking, L.M. Optimal Control. Ed. Oxford (1991)			
		Process Dynamics and Control Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp Ed. J. Wiley & Sons ISBN 0-471-86389-0 Fecha de edición: 1989.			
		Process Dynamics, Modeling, Analysis and SimulationB.Wayne Bequette Ed. Prentice Hall PTR ISBN 0-13-206889-3 Fecha de edición: 1998.			
	Recursos Web y multimedia	Serán listados en Moodle			
Equipomiente	Instrumentación laboratorio	Instrumental en los invernaderos de los Campos de prácticas.			
Equipamiento	Aplicaciones software	MatLab, Simulink, TCPIP, EXCEL			

Locales para trabajo	Laboratorios con libre acceso	Dpto de Tecnología de Alimentos de la UPM, Dpto de Producción Vegetal y Dpto de Matemática Aplicada		
no presencial	Salas para trabajo en grupo	Dpto de Tecnología de Alimentos de la UPM y Dpto de Matemática Aplicada		
	Otros	Salas multiuso de la Biblioteca		